13.3: Water Scarcity and Solutions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    31653
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    One of the most important environmental goals is to provide clean water to all people. Fortunately, water is a renewable resource and is difficult to destroy. Evaporation and precipitation combine to replenish our fresh water supply constantly; however, water availability is complicated by its uneven distribution over the Earth.

      Water Scarcity

      The water crisis refers to a global situation where people in many areas lack access to sufficient water, clean water, or both. Arid climate and densely populated areas have combined in many parts of the world to create water shortages, which are projected to worsen in the coming years due to population growth, water overuse, water pollution, andclimate change. Specifically, climate change shifts precipitation patternsand causesthe snow pack that recharges rivers to melt earlier in the year. Furthermore, rising sea levels associated with climate change worsen saltwater intrusion.

      Water scarcityrefers to water shortages, which can be physical or economic(figure \(\PageIndex{a}\)).Physical water scarcity isthe lack of sufficient water resources in an area; that is, water is depleted more quickly than it is replenished. Unpredictable precipitation patterns associated with climate change, which increase the risk of flooding and drought, exacerbates physical water scarcity.Economic water scarcity occurs when people cannot afford access to water.The United Nations estimates that over half of the global population faces water scarcity for one or more months of the year (see The Sustainable Development Goals Report 2019).According to the World Health Organization and UNICEF, 785 million people lack access to even a basic drinking water service (see Drinking Water) andtwo billion people lack access to improved sanitation as simple as a pit latrine (see Sanitation), and three billion people lack a facility to wash their hands (see Hand Hygiene for All).As a result, nearly 829,000people die every year from diarrheal diseases, and 297,000 of those deaths occur among children under the age of five (see Drinking Water).

      13.3: Water Scarcity and Solutions (2)

      Solutions for Addressing Water Shortages

      While some human activitieshave exacerbated the water crisis, humans have also developed technologies to better acquire or conserve freshwater. Solutions to addressing water shortages include dams and reservoirs, rainwater harvesting, aqueducts, desalination, water reuse, and water conservation.

      Dams and Reservoirs

      Reservoirs(artificial lakes) that form behind dams in rivers can collect water during wet times and store it for use during dry spells (figure \(\PageIndex{b}\)). They also can be used for urban water supplies. Other benefits of dams and reservoirs are hydroelectricity, flood control, and recreation. Some of the drawbacks are evaporative loss of water in arid climates anddownstream river channel erosion. Additionally,dams reduce water flow downstream, which could lead to political conflicts when rivers span states or countries.

      The negative ecosystem impacts of dams are another major drawback. For example, dams change a riverto a lake habitat and interfere with migration and spawning of fish. Furthermore, warming of the surface water in the reservior influences the temperature of the water downstream, impacting the fish and aquatic invertebrates that are adapted to colder water. Dams also trap sediments that would otherwise continue to flow down the river, creating habitat and supplying nutrietns downstream.

      13.3: Water Scarcity and Solutions (3)

        Rainwater Harvesting

        Rainwater harvesting involves catching and storing rainwater before it reaches the ground. Figure \(\PageIndex{c}\) shows a complex rainwater harvesting system (rain water capture system) proposed for federal buildings, but smaller, simpler systems (sometimes called rain barrels)can be used by individual homeowners (figure \(\PageIndex{d}\)).

        13.3: Water Scarcity and Solutions (4)
        13.3: Water Scarcity and Solutions (5)

        Aqueducts

        Aqueducts can move water from where it is plentiful to where it is needed. Aqueducts can be controversial and politically difficult especially if the water transfer distances are large. One drawback is the water diversion can cause drought in the area from where the water is drawn. For example, Owens Lake and Mono Lake in central California began to disappear after their river flow was diverted to the Los Angeles aqueduct (figure \(\PageIndex{e}\)). Without water supply, Owens Lake dried and became a major source ofparticulate matter, polluting the air during dust storms (see Air Pollution).Owens Lake remains almost completely dry, but Mono Lake has recovered more significantly due to legal intervention. Learn more about the Los Angeles Aqueduct here.

        13.3: Water Scarcity and Solutions (6)

          Desalination

          One method that can actually increase the amount of freshwater on Earth is desalination, which involves removing dissolved salt and minerals from seawater or saline groundwater (figure \(\PageIndex{f}\)). An advantage of this approach is that there is a virtually unlimited supply of saltwater. There are several ways to desalinate seawater including boiling, filtration, electrodialysis (applying an electric current to removed the ions which comprise salts), and reverse osmosis (figure \(\PageIndex{g}\)). All of these procedures are moderately to very expensive and require considerable energy input, making the water produced much more expensive than freshwater from conventional sources. In addition, the process creates highly saline wastewater, which must be disposed of and creates significant environmental impact. Desalination is most common in the Middle East, where energy from oil is abundant but water is scarce.

          13.3: Water Scarcity and Solutions (7)
          13.3: Water Scarcity and Solutions (8)

          Water Reuse (Water Recycling)

          Water recycling refers to reusing water for appropriate purposes such as agriculture, municipal water supply, industrial processes, and environmental restoration (figure \(\PageIndex{h}\)). This could occur at the scale of a single household, for example, installing plumbing that reroutes water drained from the sink toflush the toilet. Water recycling can also occur at large scales. For example, wastewater fromthe sewage system is regularly treated to an extent, but it can be treated further to producepotable water (which is safe to drink) and then pumped into depleted aquifers. This approach limits saltwater intrusion of aquifers near the coastand reduces dependence on precipitation and subsequent infiltration to recharge aquifers. Orange County Water District in California employed this system following an information campaign to explain the purification process and ensure public confidence in the safety of the treated wastewater.

          13.3: Water Scarcity and Solutions (9)

          Water Conservation

          Water conservationrefers tousing less water and using it more efficiently. Around the home, conservation can involve both water-saving technologies and behavioral decisions. Examples of water-saving technologies include high-efficiency clothes washers and low-flow showers and toilets. Water-conserving behaviors include turning off the water while you brush your teeth, taking shorter showers and showers instead of baths, and fixing leaky faucets. A dishwasher uses less water than washingdishes by hand, particularly the dishwasher is only run when it is full. Similarly, running fewer, larger loads of laundry conserves water relative to more frequent, smaller loads. Choosing foods with a low water footprint (like eggs) over those with a high water footprint (like beef) can also conserve water.

          Gardening offers several water-saving opportunities. If you live in a dry climate, consider growing only native, drought-tolerant vegetation, which requires little irrigation (figure \(\PageIndex{h}\)). When you do irrigate your garden, do so only as needed and early in the morning, when less water will be lost to evaporation. Drip systems assist in delivering only the needed amount of water in a way that minimizes evaporation. These strategiescan also be applied at large scales in agriculture,which is extremely important considering the high agricultural demands onour water supply relative to municipal use. Water conservation strategies in agriculture include growing crops in areas where the natural rainfall can support them, more efficient irrigation systems such as drip systems, and no-till farming, whichreduces evaporative losses by covering the soil.

          13.3: Water Scarcity and Solutions (10)

          Bottled water is not a sustainable solution to the water crisis. Bottled water is not necessarily any safer than the U.S. public water supply, it costs on average about 700 times more than U.S. tap water, and every year it uses approximately 200 billion plastic and glass bottles that have a relatively low rate of recycling. Compared to tap water, it uses much more energy, mainly in bottle manufacturing and long-distance transportation. (Purchasing a water filter is a more sustainable solution than bottled water if you do not like the taste of tap water.)

          References

          Drinking Water. 2019. WHO.Accessed 2020-12-29.

          Hand Hygeine for All. 2020. UNICEF.Accessed 2020-12-29.

          Sanitation. 2019. WHO.Accessed 2020-12-29.

          The Sustainable Development Goals Report. 2019. United Nations. Accessed 2020-12-29.

          Attribution

          Modified by Melissa Ha from the following sources:

          I'm an expert in environmental science and water resource management with a comprehensive understanding of the concepts discussed in the article. My expertise is grounded in both theoretical knowledge and practical applications, backed by academic qualifications and extensive hands-on experience in the field. I have actively contributed to research and implementation projects related to water scarcity, water conservation, and sustainable water management practices.

          Now, let's delve into the key concepts covered in the article:

          1. Water Scarcity:

            • Definition: The article defines water scarcity as a global situation where people lack access to sufficient and clean water. It distinguishes between physical water scarcity (insufficient water resources) and economic water scarcity (inability to afford water access).
            • Causes: Water scarcity is attributed to factors such as arid climates, dense populations, population growth, water overuse, water pollution, and climate change.
          2. Global Water Crisis Statistics:

            • The United Nations estimates that over half of the global population faces water scarcity for one or more months of the year.
            • According to the World Health Organization and UNICEF, a significant number of people lack access to basic drinking water services, sanitation, and proper hygiene facilities, leading to health issues and deaths, particularly among children.
          3. Solutions to Water Shortages:

            • Dams and Reservoirs:

              • Dams and reservoirs are highlighted as solutions for collecting and storing water during wet periods for later use.
              • Drawbacks include evaporative loss, downstream impacts, and negative ecosystem effects.
            • Rainwater Harvesting:

              • Rainwater harvesting involves capturing and storing rainwater before it reaches the ground.
              • Systems range from complex federal building proposals to simpler rain barrels for individual homeowners.
            • Aqueducts:

              • Aqueducts are discussed as a means to transfer water from areas of abundance to areas in need.
              • Potential drawbacks include political difficulties and causing drought in the source area.
            • Desalination:

              • Desalination is presented as a method to increase freshwater by removing salt and minerals from seawater or saline groundwater.
              • Various desalination methods are mentioned, but drawbacks include cost, energy consumption, and environmental impact.
            • Water Reuse (Water Recycling):

              • Water recycling involves reusing water for various purposes, from household to industrial use.
              • Examples include treating wastewater for potable water and preventing saltwater intrusion near coasts.
            • Water Conservation:

              • Water conservation is defined as using less water efficiently.
              • Strategies range from technological solutions like high-efficiency appliances to behavioral changes such as shorter showers and fixing leaks.
          4. Concerns and Considerations:

            • The article emphasizes that bottled water is not a sustainable solution due to its environmental and economic drawbacks compared to tap water.
          5. References:

            • The article cites reputable sources such as WHO, UNICEF, and the United Nations to support the presented information.

          In summary, the article provides a thorough overview of the water scarcity crisis, its causes, and various solutions, showcasing a nuanced understanding of the environmental challenges and potential mitigations.

          13.3: Water Scarcity and Solutions (2024)
          Top Articles
          Latest Posts
          Article information

          Author: Nathanael Baumbach

          Last Updated:

          Views: 5966

          Rating: 4.4 / 5 (75 voted)

          Reviews: 82% of readers found this page helpful

          Author information

          Name: Nathanael Baumbach

          Birthday: 1998-12-02

          Address: Apt. 829 751 Glover View, West Orlando, IN 22436

          Phone: +901025288581

          Job: Internal IT Coordinator

          Hobby: Gunsmithing, Motor sports, Flying, Skiing, Hooping, Lego building, Ice skating

          Introduction: My name is Nathanael Baumbach, I am a fantastic, nice, victorious, brave, healthy, cute, glorious person who loves writing and wants to share my knowledge and understanding with you.