AMP-activated protein kinase signaling in metabolic regulation (2024)

1. Klein S., et al. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Diabetes Care. 2004;27:2067–2073. [PubMed] [Google Scholar]

2. Wing R.R., et al. Behavioral science research in diabetes: lifestyle changes related to obesity, eating behavior, and physical activity. Diabetes Care. 2001;24:117–123. [PubMed] [Google Scholar]

3. Hardie D.G. The AMP-activated protein kinase pathway: new players upstream and downstream. J. Cell Sci. 2004;117:5479–5487. [PubMed] [Google Scholar]

4. Carling D. The AMP-activated protein kinase cascade: a unifying system for energy control. . Trends Biochem. Sci. 2004;29:18–24. [PubMed] [Google Scholar]

5. Kemp B.E., et al. AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans. 2003;31:162–168. [PubMed] [Google Scholar]

6. Kahn B.B., Alquier T., Carling D., Hardie D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15–25. [PubMed] [Google Scholar]

7. Woods A., et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2:21–33. [PubMed] [Google Scholar]

8. Hurley R.L., et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 2005;280:29060–29066. [PubMed] [Google Scholar]

9. Hawley S.A., et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2:9–19. [PubMed] [Google Scholar]

10. Birnbaum M.J. Activating AMP-activated protein kinase without AMP. Mol. Cell. 2005;19:289–290. [PubMed] [Google Scholar]

11. Hardie D.G. Minireview. The AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology. 2003;144:5179–5183. [PubMed] [Google Scholar]

12. Fryer L.G.D., Parbu-Patel A., Carling D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J. Biol. Chem. 2002;277:25226–25232. [PubMed] [Google Scholar]

13. Corton J.M., Gillespie J.G., Hawley S.A., Hardie D.G. 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 1995;229:558–565. [PubMed] [Google Scholar]

14. Vincent M.F., Marangos P.J., Gruber H.E., Van den Berghe G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes. 1991;40:1259–1266. [PubMed] [Google Scholar]

15. Longnus S.L., Wambolt R.B., Parsons H.L., Brownsey R.W., Allard M.F. 5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;284:R936–R944. [PubMed] [Google Scholar]

16. DeFronzo R.A., Gunnarsson R., Bjorkman O., Olsson M., Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. . J. Clin. Invest. 1985;76:149–155. [PMC free article] [PubMed] [Google Scholar]

17. Hutber C.A., Hardie D.G., Winder W.W. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am. J. Physiol. Endocrinol. Metab. 1997;272:E262–E266. [PubMed] [Google Scholar]

18. Merrill G.F., Kurth E.J., Hardie D.G., Winder W.W. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. Endocrinol. Metab. 1997;273:E1107–E1112. [PubMed] [Google Scholar]

19. Kurth-Kraczek E., Hirshman M., Goodyear L., Winder W. 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. 1999;48:1667–1671. [PubMed] [Google Scholar]

20. Wright D.C., Geiger P.C., Holloszy J.O., Han D.H. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. Am. J. Physiol. Endocrinol. Metab. 2005;288:E1062–E1066. [PubMed] [Google Scholar]

21. Derave W., et al. Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes. 2000;49:1281–1287. [PubMed] [Google Scholar]

22. Mu J., Brozinick J.T., Valladares O., Bucan M., Birnbaum M.J. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell. 2001;7:1085–1094. [PubMed] [Google Scholar]

23. Fujii N., et al. AMP-activated protein kinase α2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J. Biol. Chem. 2005;280:39033–39041. [PubMed] [Google Scholar]

24. Jorgensen S.B., et al. Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 2004;279:1070–1079. [PubMed] [Google Scholar]

25. Barnes B.R., et al. The 5′-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J. Biol. Chem. 2004;279:38441–38447. [PubMed] [Google Scholar]

26. Sakamoto K., et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. Embo J. 2005;24:1810–1820. [PMC free article] [PubMed] [Google Scholar]

27. Sano H., et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J. Biol. Chem. 2003;278:14599–14602. [PubMed] [Google Scholar]

28. Larance M., et al. Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J. Biol. Chem. 2005;280:37803–37813. [PubMed] [Google Scholar]

29. Zeigerer A., McBrayer M.K., McGraw T.E. Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160. Mol. Biol. Cell. 2004;15:4406–4415. [PMC free article] [PubMed] [Google Scholar]

30. Karlsson H.K.R., et al. Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. . Diabetes. 2005;54:1692–1697. [PubMed] [Google Scholar]

31. Deshmukh A., et al. Exercise-induced phosphorylation of the novel Akt substrates AS160 and filamin A in human skeletal muscle. Diabetes. 2006 doi:10.2337/db05-1419. [PubMed] [CrossRef] [Google Scholar]

32. Treebak J.T., et al. AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. . Diabetes. 2006 In press. [PubMed] [Google Scholar]

33. Zhou G., et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001;108:1167–1174. doi:10.1172/JCI200113505. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Musi N., et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes. 2002;51:2074–2081. [PubMed] [Google Scholar]

35. Ruderman N.B., Saha A.K., Vavvas D., Witters L.A. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 1999;276:E1–E18. [PubMed] [Google Scholar]

36. Trumble G., Smith M., Winder W. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur. J. Biochem. 1995;231:192–198. [PubMed] [Google Scholar]

37. Winder W.W., Hardie D.G. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. Endocrinol. Metab. 1996;270:E299–E304. [PubMed] [Google Scholar]

38. Winder W.W., et al. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J. Appl. Physiol. 1997;82:219–225. [PubMed] [Google Scholar]

39. Merrill G.F., Kurth E.J., Rasmussen B.B., Winder W.W. Influence of malonyl-CoA and palmitate concentration on rate of palmitate oxidation in rat muscle. J. Appl. Physiol. 1998;85:1909–1914. [PubMed] [Google Scholar]

40. Collier C.A., Bruce C.R., Smith A.C., Lopaschuk G., Dyck D.J. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2006 doi:10.1152/ajpendo.00272.2005. [PubMed] [CrossRef] [Google Scholar]

41. Holloszy J.O. Exercise-induced increase in muscle insulin sensitivity. J. Appl. Physiol. 2005;99:338–343. [PubMed] [Google Scholar]

42. Zierath J.R. Exercise effects of muscle insulin signaling and action. Invited review: exercise training-induced changes in insulin signaling in skeletal muscle. J. Appl. Physiol. 2002;93:773–781. [PubMed] [Google Scholar]

43. Holloszy J. Adaptation of skeletal muscle to endurance exercise. Med. Sci. Sports. 1975;7:155–164. [PubMed] [Google Scholar]

44. Morino K., et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J. Clin. Invest. 2005;115:3587–3593. doi:10.1172/JCI25151. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Petersen K.F., Dufour S., Befroy D., Garcia R., Shulman G.I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 2004;350:664–671. [PMC free article] [PubMed] [Google Scholar]

46. Petersen K.F., et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. . Science. 2003;300:1140–1142. [PMC free article] [PubMed] [Google Scholar]

47. Fisher J.S., Gao J., Han D.-H., Holloszy J.O., Nolte L.A. Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. . Am. J. Physiol. Endocrinol. Metab. 2002;282:E18–E23. [PubMed] [Google Scholar]

48. Song X.M., et al. 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia. 2002;45:56–65. [PubMed] [Google Scholar]

49. Holmes B.F., Kurth-Kraczek E.J., Winder W.W. Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J. Appl. Physiol. 1999;87:1990–1995. [PubMed] [Google Scholar]

50. Iglesias M.A., et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes. 2002;51:2886–2894. [PubMed] [Google Scholar]

51. Buhl E.S., et al. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes. 2001;50:12–17. [PubMed] [Google Scholar]

52. Long Y.C., et al. Role of AMP-activated protein kinase in the coordinated expression of genes controlling glucose and lipid metabolism in mouse white skeletal muscle. Diabetologia. 2005;48:2354–2364. [PubMed] [Google Scholar]

53. Nilsson E.C., et al. Opposite transcriptional regulation in skeletal muscle of AMPK gamma 3 R225Q transgenic versus knock-out mice. J. Biol. Chem. 2006;281:7244–7252. [PubMed] [Google Scholar]

54. Barnes B.R., et al. Changes in exercise-induced gene expression in 5′-AMP-activated protein kinase γ3-null and γ3 R225Q transgenic mice. Diabetes. 2005;54:3484–3489. [PubMed] [Google Scholar]

55. Ojuka E.O., et al. Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca2+. Am. J. Physiol. Endocrinol. Metab. 2002;282:E1008–E1013. [PubMed] [Google Scholar]

56. Zong H., et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. U. S. A. . 2002;99:15983–15987. [PMC free article] [PubMed] [Google Scholar]

57. Bergeron R., et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 2001;281:E1340–E1346. [PubMed] [Google Scholar]

58. Puigserver P., Spiegelman B.M. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 2003;24:78–90. [PubMed] [Google Scholar]

59. Winder W.W., et al. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 2000;88:2219–2226. [PubMed] [Google Scholar]

60. Jorgensen S.B., et al. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J. . 2005;19:1146–1148. [PubMed] [Google Scholar]

61. Consoli A. Role of liver in pathophysiology of NIDDM. Diabetes Care. 1992;15:430–441. [PubMed] [Google Scholar]

62. Saltiel A.R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell. 2001;104:517–529. [PubMed] [Google Scholar]

63. Saltiel A.R., Kahn C.R. Insulin signalling and the regulation of glucose and lipid metabolism. . Nature. 2001;414:799–806. [PubMed] [Google Scholar]

64. Lochhead P.A., Salt I.P., Walker K.S., Hardie D.G., Sutherland C. 5-Aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 2000;49:896–903. [PubMed] [Google Scholar]

65. Andreelli F., et al. Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not by insulin. Endocrinology. 2006;147:2432–2441. [PubMed] [Google Scholar]

66. Koo S.-H., et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. . Nature. 2005;437:1109–1111. [PubMed] [Google Scholar]

67. Shaw R.J., et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310:1642–1646. [PMC free article] [PubMed] [Google Scholar]

68. Foretz M., Carling D., Guichard C., Ferre P., Foufelle F. AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem. 1998;273:14767–14771. [PubMed] [Google Scholar]

69. Woods A., et al. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol. 2000;20:6704–6711. [PMC free article] [PubMed] [Google Scholar]

70. Zang M., et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem. 2004;279:47898–47905. [PubMed] [Google Scholar]

71. Groop L.C., et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J. Clin. Invest. 1989;84:205–213. [PMC free article] [PubMed] [Google Scholar]

72. Bays H., Mandarino L., DeFronzo R.A. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J. Clin. Endocrinol. Metab. 2004;89:463–478. [PubMed] [Google Scholar]

73. Garton A.J., et al. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur. J. Biochem. 1989;179:249–254. [PubMed] [Google Scholar]

74. Sullivan J.E., et al. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 1994;353:33–36. [PubMed] [Google Scholar]

75. Daval M., et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. . J. Biol. Chem. 2005;280:25250–25257. [PubMed] [Google Scholar]

76. Villena J.A., et al. Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-alpha2 subunit. Diabetes. 2004;53:2242–2249. [PubMed] [Google Scholar]

77. Bergeron R., et al. Effect of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes. 2001;50:1076–1082. [PubMed] [Google Scholar]

78. Yin W., Mu J., Birnbaum M.J. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes. J. Biol. Chem. 2003;278:43074–43080. [PubMed] [Google Scholar]

79. Detimary P., Jonas J.C., Henquin J.C. Possible links between glucose-induced changes in the energy state of pancreatic B cells and insulin release. Unmasking by decreasing a stable pool of adenine nucleotides in mouse islets. J. Clin. Invest. 1995;96:1738–1745. [PMC free article] [PubMed] [Google Scholar]

80. Detimary P., et al. The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J. Biol. Chem. 1998;273:33905–33908. [PubMed] [Google Scholar]

81. Aguilar-Bryan L., Bryan J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 1999;20:101–135. [PubMed] [Google Scholar]

82. Safayhi H., et al. L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Mol. Endocrinol. 1997;11:619–629. [PubMed] [Google Scholar]

83. Rutter G.A. Nutrient-secretion coupling in the pancreatic islet beta-cell: recent advances. Mol. Aspects Med. 2001;22:247–284. [PubMed] [Google Scholar]

84. Detimary P., Gilon P., Henquin J.C. Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem. J. 1998;333:269–274. [PMC free article] [PubMed] [Google Scholar]

85. Salt I.P., Johnson G., Ashcroft S.J., Hardie D.G. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem. J. 1998;335:533–539. [PMC free article] [PubMed] [Google Scholar]

86. da Silva Xavier G., et al. Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc. Natl. Acad. Sci. U. S. A. . 2000;97:4023–4028. [PMC free article] [PubMed] [Google Scholar]

87. da Silva Xavier G., et al. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. . Biochem. J. 2003;371:761–774. [PMC free article] [PubMed] [Google Scholar]

88. Leclerc I., et al. Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2004;286:E1023–E1031. [PubMed] [Google Scholar]

89. Zhang S., Kim K.H. Glucose activation of acetyl-CoA carboxylase in association with insulin secretion in a pancreatic beta-cell line. J. Endocrinol. 1995;147:33–41. [PubMed] [Google Scholar]

90. Eto K., et al. Genetic manipulations of fatty acid metabolism in β-cells are associated with dysregulated insulin secretion. Diabetes. 2002;51(Suppl. 3):S414–S420. [PubMed] [Google Scholar]

91. Rutter G.A., Da Silva Xavier G., Leclerc I. Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose hom*oeostasis. . Biochem. J. 2003;375:1–16. [PMC free article] [PubMed] [Google Scholar]

92. Halaas J.L., et al. Weight-reducing effects of the plasma protein encoded by the obese gene. . Science. 1995;269:543–546. [PubMed] [Google Scholar]

93. Kahn B.B., Flier J.S. Obesity and insulin resistance. J. Clin. Invest. 2000;106:473–481. [PMC free article] [PubMed] [Google Scholar]

94. Unger R.H., Zhou Y.-T., Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc. Natl. Acad. Sci. U. S. A. . 1999;96:2327–2332. [PMC free article] [PubMed] [Google Scholar]

95. Lee Y., et al. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J. Biol. Chem. 2001;276:5629–5635. [PubMed] [Google Scholar]

96. Muoio D.M., Dohm G.L., Fiedorek F.T., Tapscott E.B., Coleman R.A. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes. 1997;46:1360–1363. [PubMed] [Google Scholar]

97. Kamohara S., Burcelin R., Halaas J.L., Friedman J.M., Charron M.J. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature. 1997;389:374–377. [PubMed] [Google Scholar]

98. Haque M., et al. Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes. 1999;48:1706–1712. [PubMed] [Google Scholar]

99. Minokoshi Y., et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415:339–343. [PubMed] [Google Scholar]

100. Fruebis J., et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. U. S. A. . 2001;98:2005–2010. [PMC free article] [PubMed] [Google Scholar]

101. Tomas E., et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. U. S. A. . 2002;99:16309–16313. [PMC free article] [PubMed] [Google Scholar]

102. Yamauchi T., et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002;8:1288–1295. [PubMed] [Google Scholar]

103. Porte D., et al. , 1998Obesity, diabetes and the central nervous system. Diabetologia. 41863–881. [PubMed] [Google Scholar]

104. Leibowitz S.F., Wortley K.E. Hypothalamic control of energy balance: different peptides, different functions. Peptides. 2004;25:473–504. [PubMed] [Google Scholar]

105. Schwartz M.W., Woods S.C., Porte D., Seeley R.J., Baskin D.G. Central nervous system control of food intake. Nature. 2000;404:661–671. [PubMed] [Google Scholar]

106. Andersson U., et al. AMP-activated protein kinase plays a role in the control of food intake. . J. Biol. Chem. 2004;279:12005–12008. [PubMed] [Google Scholar]

107. Minokoshi Y., et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004;428:569–574. [PubMed] [Google Scholar]

108. Kim E.-K., et al. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J. Biol. Chem. 2004;279:19970–19976. [PubMed] [Google Scholar]

109. Perrin C., Knauf C., Burcelin R. Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, controls muscle glycogen synthesis. . Endocrinology. 2004;145:4025–4033. [PubMed] [Google Scholar]

110. Viollet B., et al. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 2003;111:91–98. doi:10.1172/JCI200316567. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Mu J., Barton E.R., Birnbaum M.J. Selective suppression of AMP-activated protein kinase in skeletal muscle: update on ‘lazy mice.’ Biochem. Soc. Trans. 2003;31:236–241. [PubMed] [Google Scholar]

112. Barnes B.R., et al. 5′-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics. Faseb J. 2005;19:773–779. [PubMed] [Google Scholar]

AMP-activated protein kinase signaling in metabolic regulation (2024)
Top Articles
Latest Posts
Article information

Author: Duncan Muller

Last Updated:

Views: 6272

Rating: 4.9 / 5 (79 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Duncan Muller

Birthday: 1997-01-13

Address: Apt. 505 914 Phillip Crossroad, O'Konborough, NV 62411

Phone: +8555305800947

Job: Construction Agent

Hobby: Shopping, Table tennis, Snowboarding, Rafting, Motor sports, Homebrewing, Taxidermy

Introduction: My name is Duncan Muller, I am a enchanting, good, gentle, modern, tasty, nice, elegant person who loves writing and wants to share my knowledge and understanding with you.