Cyclic AMP: Master Regulator of Innate Immune Cell Function (2024)

1. Hofer AM, Lefkimmiatis K. Extracellular calcium and cAMP: second messengers as “third messengers”? Physiology (Bethesda) 2007;22:320–327. [PubMed] [Google Scholar]

2. Beavo JA, Brunton LL. Cyclic nucleotide research–still expanding after half a century. Nat Rev Mol Cell Biol 2002;3:710–718. [PubMed] [Google Scholar]

3. Mizgerd JP. Acute lower respiratory tract infection. N Engl J Med 2008;358:716–727. [PMC free article] [PubMed] [Google Scholar]

4. Landry Y, Niederhoffer N, Sick E, Gies JP. Heptahelical and other G-protein-coupled receptors (GPCRs) signaling. Curr Med Chem 2006;13:51–63. [PubMed] [Google Scholar]

5. Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006;362:623–639. [PMC free article] [PubMed] [Google Scholar]

6. Sunahara RK, Taussig R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2002;2:168–184. [PubMed] [Google Scholar]

7. Omori K, Kotera J. Overview of PDEs and their regulation. Circ Res 2007;100:309–327. [PubMed] [Google Scholar]

8. Baillie GS, Scott JD, Houslay MD. Compartmentalisation of phosphodiesterases and protein kinase A: opposites attract. FEBS Lett 2005;579:3264–3270. [PubMed] [Google Scholar]

9. Chin KV, Yang WL, Ravatn R, Kita T, Reitman E, Vettori D, Cvijic ME, Shin M, Iacono L. Reinventing the wheel of cyclic AMP: novel mechanisms of cAMP signaling. Ann N Y Acad Sci 2002;968:49–64. [PubMed] [Google Scholar]

10. Kopperud R, Krakstad C, Selheim F, Doskeland SO. cAMP effector mechanisms: novel twists for an ‘old’ signaling system. FEBS Lett 2003;546:121–126. [PubMed] [Google Scholar]

11. Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M. Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol 2005;174:595–599. [PubMed] [Google Scholar]

12. Huang SK, Wettlaufer SH, Hogaboam CM, Flaherty KR, Martinez FJ, Myers JL, Colby TV, Travis WD, Toews GB, Peters-Golden M. Variable prostaglandin E2 resistance in fibroblasts from patients with usual interstitial pneumonia. Am J Respir Crit Care Med 2008;177:66–74. [PMC free article] [PubMed] [Google Scholar]

13. Lissandron V, Zaccolo M. Compartmentalized cAMP/PKA signalling regulates cardiac excitation-contraction coupling. J Muscle Res Cell Motil 2006;27:399–403. [PubMed] [Google Scholar]

14. Nikolaev VO, Lohse MJ. Monitoring of cAMP synthesis and degradation in living cells. Physiology (Bethesda) 2006;21:86–92. [PubMed] [Google Scholar]

15. Bos JL. Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 2006;31:680–686. [PubMed] [Google Scholar]

16. Aronoff DM, Carstens JK, Chen GH, Toews GB, Peters-Golden M. Short communication: differences between macrophages and dendritic cells in the cyclic AMP-dependent regulation of lipopolysaccharide-induced cytokine and chemokine synthesis. J Interferon Cytokine Res 2006;26:827–833. [PubMed] [Google Scholar]

17. van der Pouw Kraan TC, Boeije LC, Smeenk RJ, Wijdenes J, Aarden LA. Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J Exp Med 1995;181:775–779. [PMC free article] [PubMed] [Google Scholar]

18. Luo M, Jones SM, Phare SM, Coffey MJ, Peters-Golden M, Brock TG. Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. J Biol Chem 2004;279:41512–41520. [PubMed] [Google Scholar]

19. Gasperini S, Crepaldi L, Calzetti F, Gatto L, Berlato C, Bazzoni F, Yoshimura A, Cassatella MA. Interleukin-10 and cAMP-elevating agents cooperate to induce suppressor of cytokine signaling-3 via a protein kinase A-independent signal. Eur Cytokine Netw 2002;13:47–53. [PubMed] [Google Scholar]

20. Xu XJ, Reichner JS, Mastrofrancesco B, Henry WL Jr, Albina JE. Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN-{beta} production. J Immunol 2008;180:2125–2131. [PMC free article] [PubMed] [Google Scholar]

21. Gordon S. The macrophage: past, present and future. Eur J Immunol 2007;37:S9–S17. [PubMed] [Google Scholar]

22. Nambu M, Morita M, Watanabe H, Uenoyama Y, Kim KM, Tanaka M, Iwai Y, Kimata H, Mayumi M, Mikawa H. Regulation of Fc gamma receptor expression and phagocytosis of a human monoblast cell line U937: participation of cAMP and protein kinase C in the effects of IFN-gamma and phorbol ester. J Immunol 1989;143:4158–4165. [PubMed] [Google Scholar]

23. Atkinson JP, Michael JM, Chaplin H Jr, Parker CW. Modulation of macrophage C3b receptor function by cytochalasin-sensitive structures. J Immunol 1977;118:1292–1299. [PubMed] [Google Scholar]

24. Makranz C, Cohen G, Reichert F, Kodama T, Rotshenker S. cAMP cascade (PKA, Epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages. Glia 2006;53:441–448. [PubMed] [Google Scholar]

25. Zalavary S, Bengtsson T. Adenosine inhibits actin dynamics in human neutrophils: evidence for the involvement of cAMP. Eur J Cell Biol 1998;75:128–139. [PubMed] [Google Scholar]

26. Ydrenius L, Majeed M, Rasmusson BJ, Stendahl O, Sarndahl E. Activation of cAMP-dependent protein kinase is necessary for actin rearrangements in human neutrophils during phagocytosis. J Leukoc Biol 2000;67:520–528. [PubMed] [Google Scholar]

27. Hazan-Eitan Z, Weinstein Y, Hadad N, Konforty A, Levy R. Induction of Fc gammaRIIA expression in myeloid PLB cells during differentiation depends on cytosolic phospholipase A2 activity and is regulated via activation of CREB by PGE2. Blood 2006;108:1758–1766. [PubMed] [Google Scholar]

28. Bryn T, Mahic M, Enserink JM, Schwede F, Aandahl EM, Tasken K. The cyclic AMP-Epac1-Rap1 pathway is dissociated from regulation of effector functions in monocytes but acquires immunoregulatory function in mature macrophages. J Immunol 2006;176:7361–7370. [PubMed] [Google Scholar]

29. Canetti C, Serezani CH, Atrasz RG, White ES, Aronoff DM, Peters-Golden M. Activation of phosphatase and tensin hom*olog on chromosome 10 mediates the inhibition of FcgammaR phagocytosis by prostaglandin E2 in alveolar macrophages. J Immunol 2007;179:8350–8356. [PubMed] [Google Scholar]

30. O'Dorisio MS, Vandenbark GR, LoBuglio AF. Human monocyte killing of Staphylococcus aureus: modulation by agonists of cyclic adenosine 3′,5′-monophosphate and cyclic guanosine 3′,5′-monophosphate. Infect Immun 1979;26:604–610. [PMC free article] [PubMed] [Google Scholar]

31. Serezani CH, Chung J, Ballinger MN, Moore BB, Aronoff DM, Peters-Golden M. Prostaglandin E2 suppresses bacterial killing in alveolar macrophages by inhibiting NADPH oxidase. Am J Respir Cell Mol Biol 2007;37:562–570. [PMC free article] [PubMed] [Google Scholar]

32. Nokta MA, Pollard RB. Human immunodeficiency virus replication: modulation by cellular levels of cAMP. AIDS Res Hum Retroviruses 1992;8:1255–1261. [PubMed] [Google Scholar]

33. Fulop T Jr, Foris G, Worum I, Leovey A. Age-dependent alterations of Fc gamma receptor-mediated effector functions of human polymorphonuclear leucocytes. Clin Exp Immunol 1985;61:425–432. [PMC free article] [PubMed] [Google Scholar]

34. Wirth JJ, Kierszenbaum F. Macrophage mediation of the inhibitory effects of elevated intracellular levels of adenosine-3′:5′ cyclic monophosphate (cAMP) on macrophage-Trypanosoma cruzi association. Int J Parasitol 1984;14:401–404. [PubMed] [Google Scholar]

35. Lin P, Welch EJ, Gao XP, Malik AB, Ye RD. Lysophosphatidylcholine modulates neutrophil oxidant production through elevation of cyclic AMP. J Immunol 2005;174:2981–2989. [PubMed] [Google Scholar]

36. Bengis-Garber C, Gruener N. Protein kinase A downregulates the phosphorylation of p47 phox in human neutrophils: a possible pathway for inhibition of the respiratory burst. Cell Signal 1996;8:291–296. [PubMed] [Google Scholar]

37. O'Dowd YM, El-Benna J, Perianin A, Newsholme P. Inhibition of formyl-methionyl-leucyl-phenylalanine-stimulated respiratory burst in human neutrophils by adrenaline: inhibition of Phospholipase A2 activity but not p47phox phosphorylation and translocation. Biochem Pharmacol 2004;67:183–190. [PubMed] [Google Scholar]

38. Chang YC, Li PC, Chen BC, Chang MS, Wang JL, Chiu WT, Lin CH. Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E2, protein kinase A, p38 MAPK, and nuclear factor-kappaB pathways. Cell Signal 2006;18:1235–1243. [PubMed] [Google Scholar]

39. Chen CC, Chiu KT, Sun YT, Chen WC. Role of the cyclic AMP-protein kinase A pathway in lipopolysaccharide-induced nitric oxide synthase expression in RAW 264.7 macrophages: involvement of cyclooxygenase-2. J Biol Chem 1999;274:31559–31564. [PubMed] [Google Scholar]

40. Won JS, Im YB, Singh AK, Singh I. Dual role of cAMP in iNOS expression in glial cells and macrophages is mediated by differential regulation of p38-MAPK/ATF-2 activation and iNOS stability. Free Radic Biol Med 2004;37:1834–1844. [PubMed] [Google Scholar]

41. Mustafa SB, Olson MS. Expression of nitric-oxide synthase in rat Kupffer cells is regulated by cAMP. J Biol Chem 1998;273:5073–5080. [PubMed] [Google Scholar]

42. Kalamidas SA, Kuehnel MP, Peyron P, Rybin V, Rauch S, Kotoulas OB, Houslay M, Hemmings BA, Gutierrez MG, Anes E, et al. cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: consequences for mycobacteria. J Cell Sci 2006;119:3686–3694. [PubMed] [Google Scholar]

43. Di A, Brown ME, Deriy LV, Li C, Szeto FL, Chen Y, Huang P, Tong J, Naren AP, Bindokas V, et al. CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 2006;8:933–944. [PubMed] [Google Scholar]

44. Pryzwansky KB, Kidao S, Merricks EP. Compartmentalization of PDE-4 and cAMP-dependent protein kinase in neutrophils and macrophages during phagocytosis. Cell Biochem Biophys 1998;28:251–275. [PubMed] [Google Scholar]

45. Brock TG, Serezani CH, Carstens JK, Peters-Golden M, Aronoff DM. Effects of prostaglandin E(2) on the subcellular localization of Epac-1 and Rap1 proteins during Fcgamma-receptor-mediated phagocytosis in alveolar macrophages. Exp Cell Res 2008;314:255–263. [PMC free article] [PubMed] [Google Scholar]

46. Vojtova J, Kamanova J, Sebo P. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 2006;9:69–75. [PubMed] [Google Scholar]

47. Katada T, Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci USA 1982;79:3129–3133. [PMC free article] [PubMed] [Google Scholar]

48. Hiemstra PS, Annema A, Schippers EF, van Furth R. Pertussis toxin partially inhibits phagocytosis of immunoglobulin G-opsonized Staphylococcus aureus by human granulocytes but does not affect intracellular killing. Infect Immun 1992;60:202–205. [PMC free article] [PubMed] [Google Scholar]

49. Schaeffer LM, Weiss AA. Pertussis toxin and lipopolysaccharide influence phagocytosis of Bordetella pertussis by human monocytes. Infect Immun 2001;69:7635–7641. [PMC free article] [PubMed] [Google Scholar]

50. Kirimanjeswara GS, Agosto LM, Kennett MJ, Bjornstad ON, Harvill ET. Pertussis toxin inhibits neutrophil recruitment to delay antibody-mediated clearance of Bordetella pertussis. J Clin Invest 2005;115:3594–3601. [PMC free article] [PubMed] [Google Scholar]

51. Confer DL, Eaton JW. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 1982;217:948–950. [PubMed] [Google Scholar]

52. Pearson RD, Symes P, Conboy M, Weiss AA, Hewlett EL. Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J Immunol 1987;139:2749–2754. [PubMed] [Google Scholar]

53. Ahuja N, Kumar P, Bhatnagar R. The adenylate cyclase toxins. Crit Rev Microbiol 2004;30:187–196. [PubMed] [Google Scholar]

54. Vanden Broeck D, Horvath C, De Wolf MJ. Vibrio cholerae: cholera toxin. Int J Biochem Cell Biol 2007;39:1771–1775. [PubMed] [Google Scholar]

55. Niemialtowski M, Klucinski W, Malicki K, de Faundez IS. Cholera toxin (choleragen)-polymorphonuclear leukocyte interactions: effect on migration in vitro and Fc gamma R-dependent phagocytic and bactericidal activity. Microbiol Immunol 1993;37:55–62. [PubMed] [Google Scholar]

56. Braun MC, He J, Wu CY, Kelsall BL. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor beta1 and beta2 chain expression. J Exp Med 1999;189:541–552. [PMC free article] [PubMed] [Google Scholar]

57. Bergman MJ, Guerrant RL, Murad F, Richardson SH, Weaver D, Mandell GL. Interaction of polymorphonuclear neutrophils with Escherichia coli. Effect of enterotoxin on phagocytosis, killing, chemotaxis, and cyclic AMP. J Clin Invest 1978;61:227–234. [PMC free article] [PubMed] [Google Scholar]

58. Hosono K, Suzuki H. Morphological transformation of Chinese hamster cells by acylpeptides, inhibitors of cAMP phosphodiesterase, produced by Bacillus subtilis. J Biol Chem 1985;260:11252–11255. [PubMed] [Google Scholar]

59. Uchiya K, Groisman EA, Nikai T. Involvement of Salmonella pathogenicity island 2 in the up-regulation of interleukin-10 expression in macrophages: role of protein kinase A signal pathway. Infect Immun 2004;72:1964–1973. [PMC free article] [PubMed] [Google Scholar]

60. Jimenez de Bagues MP, Dudal S, Dornand J, Gross A. Cellular bioterrorism: how Brucella corrupts macrophage physiology to promote invasion and proliferation. Clin Immunol 2005;114:227–238. [PubMed] [Google Scholar]

61. Oberholzer M, Marti G, Baresic M, Kunz S, Hemphill A, Seebeck T. The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence. FASEB J 2007;21:720–731. [PubMed] [Google Scholar]

62. Aandahl EM, Aukrust P, Skalhegg BS, Muller F, Froland SS, Hansson V, Tasken K. Protein kinase A type I antagonist restores immune responses of T cells from HIV-infected patients. FASEB J 1998;12:855–862. [PubMed] [Google Scholar]

63. Azzam R, Kedzierska K, Leeansyah E, Chan H, Doischer D, Gorry PR, Cunningham AL, Crowe SM, Jaworowski A. Impaired complement-mediated phagocytosis by HIV type-1-infected human monocyte-derived macrophages involves a cAMP-dependent mechanism. AIDS Res Hum Retroviruses 2006;22:619–629. [PubMed] [Google Scholar]

64. Thomas CA, Weinberger OK, Ziegler BL, Greenberg S, Schieren I, Silverstein SC, El Khoury J. Human immunodeficiency virus-1 env impairs Fc receptor-mediated phagocytosis via a cyclic adenosine monophosphate-dependent mechanism. Blood 1997;90:3760–3765. [PubMed] [Google Scholar]

65. Ramis I, Rosello-Catafau J, Gomez G, Zabay JM, Fernandez Cruz E, Gelpi E. Cyclooxygenase and lipoxygenase arachidonic acid metabolism by monocytes from human immune deficiency virus-infected drug users. J Chromatogr 1991;557:507–513. [PubMed] [Google Scholar]

66. Foley P, Kazazi F, Biti R, Sorrell TC, Cunningham AL. HIV infection of monocytes inhibits the T-lymphocyte proliferative response to recall antigens, via production of eicosanoids. Immunology 1992;75:391–397. [PMC free article] [PubMed] [Google Scholar]

67. Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2007;37:748–755. [PubMed] [Google Scholar]

68. Cayeux SJ, Beverley PC, Schulz R, Dorken B. Elevated plasma prostaglandin E2 levels found in 14 patients undergoing autologous bone marrow or stem cell transplantation. Bone Marrow Transplant 1993;12:603–608. [PubMed] [Google Scholar]

69. Ballinger MN, Aronoff DM, McMillan TR, Cooke KR, Olkiewicz K, Toews GB, Peters-Golden M, Moore BB. Critical role of prostaglandin E2 overproduction in impaired pulmonary host response following bone marrow transplantation. J Immunol 2006;177:5499–5508. [PubMed] [Google Scholar]

70. Bjornson AB, Knippenberg RW, Bjornson HS. Bactericidal defect of neutrophils in a guinea pig model of thermal injury is related to elevation of intracellular cyclic-3′,5′-adenosine monophosphate. J Immunol 1989;143:2609–2616. [PubMed] [Google Scholar]

71. Bjornson AB, Knippenberg RW, Bjornson HS. Nonsteroidal anti-inflammatory drugs correct the bactericidal defect of polymorphonuclear leukocytes in a guinea pig model of thermal injury. J Infect Dis 1988;157:959–967. [PubMed] [Google Scholar]

72. Stapleton PP, Fujita J, Murphy EM, Naama HA, Daly JM. The influence of restricted calorie intake on peritoneal macrophage function. Nutrition 2001;17:41–45. [PubMed] [Google Scholar]

73. Redmond HP, Shou J, Kelly CJ, Schreiber S, Miller E, Leon P, Daly JM. Immunosuppressive mechanisms in protein-calorie malnutrition. Surgery 1991;110:311–317. [PubMed] [Google Scholar]

74. Starczewski M, Voigtmann R, Peskar BA, Peskar BM. Plasma levels of 15-keto-13,14-dihydro-prostaglandin E2 in patients with bronchogenic carcinoma. Prostaglandins Leukot Med 1984;13:249–258. [PubMed] [Google Scholar]

75. Lu MC, Peters-Golden M, Hostetler DE, Robinson NE, Derksen FJ. Age-related enhancement of 5-lipoxygenase metabolic capacity in cattle alveolar macrophages. Am J Physiol 1996;271:L547–L554. [PubMed] [Google Scholar]

76. Hayek MG, Mura C, Wu D, Beharka AA, Han SN, Paulson KE, Hwang D, Meydani SN. Enhanced expression of inducible cyclooxygenase with age in murine macrophages. J Immunol 1997;159:2445–2451. [PubMed] [Google Scholar]

77. Strandvik B, Svensson E, Seyberth HW. Prostanoid biosynthesis in patients with cystic fibrosis. Prostaglandins Leukot Essent Fatty Acids 1996;55:419–425. [PubMed] [Google Scholar]

78. Medjane S, Raymond B, Wu Y, Touqui L. Impact of CFTR DeltaF508 mutation on prostaglandin E2 production and type IIA phospholipase A2 expression by pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005;289:L816–L824. [PubMed] [Google Scholar]

79. Lands LC, Milner R, Cantin AM, Manson D, Corey M. High-dose ibuprofen in cystic fibrosis: Canadian safety and effectiveness trial. J Pediatr 2007;151:249–254. [PubMed] [Google Scholar]

80. Konstan MW, Schluchter MD, Xue W, Davis PB. Clinical use of Ibuprofen is associated with slower FEV1 decline in children with cystic fibrosis. Am J Respir Crit Care Med 2007;176:1084–1089. [PMC free article] [PubMed] [Google Scholar]

81. Maris NA, Florquin S, van't Veer C, de Vos AF, Buurman W, Jansen HM, van der Poll T. Inhalation of beta 2 agonists impairs the clearance of nontypable Haemophilus influenzae from the murine respiratory tract. Respir Res 2006;7:57. [PMC free article] [PubMed] [Google Scholar]

82. Calverley PM, Rennard SI. What have we learned from large drug treatment trials in COPD? Lancet 2007;370:774–785. [PubMed] [Google Scholar]

83. Aronoff DM, Canetti C, Peters-Golden M. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J Immunol 2004;173:559–565. [PubMed] [Google Scholar]

84. Bloodstream infections among patients treated with intravenous epoprostenol or intravenous treprostinil for pulmonary arterial hypertension–seven sites, United States, 2003–2006. MMWR Morb Mortal Wkly Rep 2007;56:170–172. [PubMed] [Google Scholar]

85. Aronoff DM, Peres CM, Serezani CH, Ballinger MN, Carstens JK, Coleman N, Moore BB, Peebles RS, Faccioli LH, Peters-Golden M. Synthetic prostacyclin analogs differentially regulate macrophage function via distinct analog-receptor binding specificities. J Immunol 2007;178:1628–1634. [PubMed] [Google Scholar]

86. Rangel Moreno J, Estrada Garcia I, De La Luz Garcia Hernandez M, Aguilar Leon D, Marquez R, Hernandez Pando R. The role of prostaglandin E2 in the immunopathogenesis of experimental pulmonary tuberculosis. Immunology 2002;106:257–266. [PMC free article] [PubMed] [Google Scholar]

87. Guimaraes ET, Santos LA, Ribeiro dos Santos R, Teixeira MM, dos Santos WL, Soares MB. Role of interleukin-4 and prostaglandin E2 in Leishmania amazonensis infection of BALB/c mice. Microbes Infect 2006;8:1219–1226. [PubMed] [Google Scholar]

88. Terrazas LI, Bojalil R, Rodriguez-Sosa M, Govezensky T, Larralde C. Taenia crassiceps cysticercosis: a role for prostaglandin E2 in susceptibility. Parasitol Res 1999;85:1025–1031. [PubMed] [Google Scholar]

Cyclic AMP: Master Regulator of Innate Immune Cell Function (2024)
Top Articles
Latest Posts
Article information

Author: Mrs. Angelic Larkin

Last Updated:

Views: 6295

Rating: 4.7 / 5 (67 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Mrs. Angelic Larkin

Birthday: 1992-06-28

Address: Apt. 413 8275 Mueller Overpass, South Magnolia, IA 99527-6023

Phone: +6824704719725

Job: District Real-Estate Facilitator

Hobby: Letterboxing, Vacation, Poi, Homebrewing, Mountain biking, Slacklining, Cabaret

Introduction: My name is Mrs. Angelic Larkin, I am a cute, charming, funny, determined, inexpensive, joyous, cheerful person who loves writing and wants to share my knowledge and understanding with you.