How the Bulova Precisionist Works (2024)

How the Bulova Precisionist Works (1)

Time-telling tools are everywhere these days. Think about the number of mobile devices, clocks on computer sidebars and car radio displays you see before lunch on any given workday; there are plenty of ways to stay on top of the time, it seems.

But there's something about the face of an elegant wristwatch that just can't be duplicated in LEDs, liquid crystal or pixels. The three-handed watch face has served centuries' worth of explorers, businesspeople and users who simply want to mix high style with punctuality.

Advertisem*nt

Of course, that's not to say that watch aficionados will tolerate lesser accuracy for the sake of a pretty piece of wrist jewelry. A watch is a tool first and foremost, and its ability to display reasonably accurate time is the key feature that differentiates it from a mere bangle. Some die-hards may stick to manual-wind watches or their automatic-watch cousins, citing the intricate beauty of their tiny mechanisms and the smooth sweep of their second hands as signs of high class, but most watch-wearers expect the relatively better accuracy and ease of use that come from a watch equipped with a quartz crystal movement.

A number of manufacturers have tried to combine the smoothness of a mechanical watch movement with the precision of the quartz crystal mechanism: Seiko's Spring Drive mechanism marries mechanical power with electronic regulation, while Citizen's Eco-Drive adds solar power and a tiny kinetic generator to the mix. But watchmaker Bulova took a different path in 2010 when it released its Precisionist mechanism: The company claims that this advanced take on quartz watch technology has raised the bar, creating the most precise watch to feature a continuous-sweep second hand [sources: Bulova; Seiko; DiFranco].

Bulova claims that the Precisionist strays from true accuracy 10 seconds or less per year, far better than the 15 seconds per month the company claims is standard for most quartz watches [source: Bulova]. But is that true? Does the Precisionist live up to the billing as a class-leading piece of technology? And how does this unique mechanism eke both smooth movement and high precision out of a quartz crystal mechanism? Take a few minutes to read on; it'll be well worth your time.

Advertisem*nt

Contents

  1. Some Background on Time and Timepieces
  2. How precise can clocks be?
  3. How the Precisionist Mechanism Works
  4. Precisionist Materials and Bulova's History

Some Background on Time and Timepieces

How the Bulova Precisionist Works (2)

Before we dive into the question of accuracy, let's take a second to get philosophical. Time measurement, after all, is something of an arbitrary construct. The seconds, minutes and hours we use to track duration are basically agreed-upon standards that humankind has employed to represent our march from the past into the future. Existence would not stop if we chose to stop tracking time in such a precise matter -- we could function just fine if our main time measurement consisted of sunrise, sunset and the position of the sun in between. A deep dive into the nature of time digs into such sticky wickets as multidimensionality, time travel and the nature of the universe. But for those of us inclined toward more concrete discussions, timepieces offer a more manageable topic [source: Biba].

Somewhere along the line, our ancestors decided that it was useful to track measured units of time. It may have been a pre-Egyptian noble or scholar who first noticed the steady march of shadows on a sunny day, but sundials -- the earliest timepieces -- have been recovered from archeological sites dating back to 800 B.C. [source: Gascoigne].

Advertisem*nt

Modern watches and clocks work using principles that first came into widespread use in the middle of the 17th century: A resonator, which is a device such as a pendulum, spring-driven flywheel or electrified quartz crystal, oscillates, which means it vibrates or swings back and forth at a consistent, measurable rate. A timepiece will use gears, cams, electric circuits or a combination thereof to translate that oscillation into the measured movement of the clock's hands or a digital readout of the time [sources: Gascoigne, DiFranco].

For example, a grandfather clock may have a pendulum designed to swing from one side to the other every second. That motion momentarily releases a spring in the clock's mechanism, allowing the second, minute and hour hands to progress by their respective distances around the clock face. Suppose, now, that your clock has a pendulum that swings every half-second, doubling its oscillation. Your clock can now track half-seconds, giving the hands a smoother motion and allowing you to adjust it with a finer degree of precision. Take this concept, replace the pendulum with an object that oscillates at an extremely high frequency -- multiple times per second -- and you have the makings of a modern timepiece.

Advertisem*nt

How precise can clocks be?

High-end watches can vary in accuracy depending on their mechanisms. Watch manufacturer Seiko claims its Spring Drive -- an electrically adjusted automatic mechanism -- varies by no more than one second per day, for example. Breitling, which markets its watches as pinnacle-of-performance timepieces for aviators and sailors, bills its automatics as meeting the Swiss Official Chronometer Testing Institute (COSC) standard for daily variation: no more than four seconds fast or six seconds slow per day. Quartz watches -- even relatively inexpensive ones -- can be expected to vary or drift by one second or less over the course of 24 hours [source: Lombardi].

The Bulova Precisionist has a claimed accuracy of 10 seconds of variation per year, drifting less in one month than a decent quartz watch might vary in a day. That may sound very accurate, and may be totally acceptable for most users. But wristwatches as a whole can't hold a candle to the mother of all accurate timekeepers: atomic clocks.

Advertisem*nt

Forget pendulums; these precision machines use a variety of methods to measure the inherent oscillation of individual atoms. Working as tiny resonators, atoms vibrate at extremely high frequencies; Cesium atoms, for example, resonate at 9,192,631,770 hertz, or cycles per second. Atomic oscillation is also very consistent: Researchers behind a London-based clock using the so-called Cesium fountain process say that their machine is accurate to within two 10 million billionths of a second. Granted, the clock suffers from the inherent problem with atomic clocks from a consumer standpoint: they're large, sterile arrays of chambers, tubes, wires and scaffolds -- not something that would look nice on your wrist, and not exactly an affordable item available at the corner drugstore [source: Loftus]. But it's nice to know the gold standard when you're talking about time. (Learn more about atomic clocks in our article, How Atomic Clocks Work.)

The Bulova Precisionist is nowhere near as accurate as an atomic clock, but it does hold its own against other wristwatches in its price range. Read on to learn how the watchmaker squeezes this level of precision out of what is essentially an accurized quartz movement.

Advertisem*nt

How the Precisionist Mechanism Works

At its heart, the Precisionist mechanism uses tried-and-true quartz crystal technology: A carefully measured electrical current energizes a quartz crystal shaped like a tuning fork, which begins to oscillate at a particular frequency. This vibration creates electrical pulses at a consistent rate; the watch's integrated circuits use those pulses to trigger the watch motor. The motor, in turn, moves the gears, and thus the hands, a tiny distance with each pulse. (To learn more about the process, check out our article on How Quartz Watches Work.)

This mechanism overcomes a number of the problems faced by manual and self-winding watches, most notably the dependence on a delicate balance of wheels and springs. These precise components can be affected by gravity and strong electromagnetic fields, and they lose accuracy if not regularly cleaned and tuned. But quartz watches aren't invincible; beyond the need to replace the battery over time, the mechanisms hinge on the integrity of a tiny quartz tuning fork. Change the fork's temperature or contaminate its surface with even a little dirt or dust, and its oscillating frequency can change, throwing off the entire system [source: DiFranco].

Advertisem*nt

The Precisionist uses a pair of tech tricks to overcome the quartz mechanism's weak points. First, its crystal is unique: most quartz watches use crystals shaped into two-pronged tuning forks, but the Precisionist literally goes one better with a three-pronged fork that the company claims can oscillate at 262.144 kilohertz (or 16 beats per second), about eight times faster than the 32.768 kilohertz (about 1 to 2 beats per second) that is the typical frequency for quartz oscillators. For comparison, the balance wheels of most mechanical watches oscillate at frequencies of 8 to 10 beats per second. Like a microscope being able to show more detail at 100X magnification than at 20X, the higher-frequency oscillation means the watch's processor can measure smaller fractions of each second, giving it more precise data to translate into the hands' movement [sources: Lombardi; Arnstein].

Bulova engineers tackled the problem of temperature fluctuation by adding temperature regulation to the Precisionist's circuitry. The circuitry in the watch essentially senses temperature changes and adapts to corresponding changes in the quartz crystal's electric pulses. It's a small adjustment that might seem too miniscule to bother with, but tiny changes in pulse strength at the crystal's high oscillation frequency can add up to accuracy-killing deviations as the temperature changes [sources: Lombardi; DiFranco].

A Fork of a Different Tune

The Precisionist isn't Bulova's first venture into accurate electronic watches. Its Accutron mechanism, unveiled in 1960, used an electromagnetic tuning fork as its resonator. The mechanism, with a claimed variation of less than one minute per month, saw use in precision components on some of NASA's early satellites and spacecraft [source: Connor].

Advertisem*nt

Precisionist Materials and Bulova's History

How the Bulova Precisionist Works (4)

As of Spring 2012, Bulova offered the Precisionist movement in six style collections ranging from sporty to dressy with prices ranging from about $300 to $900. For the most part, the collections target fashion-conscious consumers, with the major difference among the styles involving face shapes, engravings, colors and material selections. These range from slim stainless steel cases with leather straps, mother-of-pearl inlays and diamond accents to chunky titanium cases with ballistic fabric straps and carbon fiber inlays.

Most of the watches are water resistant to about 100 feet (30 meters) -- although one might find it hard to imagine taking the diamond-studded designs anywhere near a pool, let alone an ocean. The Champlain collection incorporates screw-back cases and extra gaskets to push the water resistance to about 900 feet (300 meters), making them suitable for use by divers [source: Bulova].

Advertisem*nt

The Bulova Watch Company is employing new-to-the-market ideas in the Precisionist mechanism, but the company itself is no spring chicken. It has been in existence since 1875, and launched its first line of wristwatches in 1919 to respond to the demand of soldiers in World War I, who needed easier access to an accurate timepiece than could be had from a pocket watch. Bulova's wrist-mounted option caught on, and veterans brought the idea home from the battlefield.

Over the years, Bulova has had other firsts that go beyond watch making. In 1941, the company made advertising history when a commercial for its wares aired during a baseball game. Legend has it the company paid a whopping $9 for the commercial (for more on Bulova's commercial first, see our article 10 TV Moments that Changed the World). And the company's Accutron quartz-tuning-fork–regulated technology, which has been used everywhere from NASA satellites to the first moon walk to Air Force One, remains a solid contender in the watch market today.

Advertisem*nt

Frequently Answered Questions

What does Precisionist watch mean?

Precisionist is a line of watches from Bulova. The watches in this line are known for their accuracy and precision.

Lots More Information

Author's Note: How the Bulova Precisionist Works

This one's gonna cost me.

As I spent my research time studying the inner workings of various high-end watches, I realized how much work goes into making an accurate timepiece. Think about it: When the various parts in a watch are measured in microns, something as small as a misplaced drop of lubricant or a stray eyelash can be the difference between a useful piece of jewelry and a dud just waiting to be returned to the manufacturer. Even microscopic bits of dust can do a number on a watch's precision. And then there's temperature, magnetic fields, imbalances not aligned with the expected gravitational pull ... but I digress.

My paranoia came from studying my own watch, a well-loved, off-brand automatic I got a few years ago as a gift. I still get a kick out of its skeletonized mechanism that lets me watch the balance wheel flicker back and forth as the second hand ticks around at 4 beats per second.

But it's drifting, or at least that's the way it seems. Maybe it's simply in need of lubrication and a little cleaning. Or perhaps it's bounced off the floor one time too many in my early-morning fumbling to get dressed for work. Either way, all it took was this article to get me paying attention to the watch's accuracy.

It's true that automatics are less precise than quartz watches. And I have to admit that some of the Precisionist models are quite attractive. My brain's now working, and I can see it: a well-earned paycheck from writing about watches will arrive just in time ... to plunk down for a nice new watch.

Funny how those things go, isn't it?

Related Articles

  • How Atomic Clocks Work
  • How Clocks Work
  • How do radio-controlled clocks set themselves to the atomic clock in Colorado?
  • How Quartz Watches work

  • Arnstein, Walt. "Does Faster Mean More Accurate? Frequency Response of a Watch Escapement." TimeZone.com. (March 15, 2012) http://www.timezone.com/library/comarticles/comarticles0017
  • Biba, Erin. "What is time? One Physicist hunts for the ultimate theory." Wired.com. Feb. 26, 2010 (March 10, 2012) http://www.wired.com/wiredscience/2010/02/what-is-time/
  • Bulova. "Inside Precisionist." (March 9, 2012) http://www.bulovaprecisionist.com/en/inside-precisionist/
  • Connor, Sean. "The amazing Bulova Accutron." (March 9, 2012) http://www.elektron.demon.co.uk/accutron.html
  • DiFranco, Steven. "Watch Technologies Explained." 2012 (March 10, 2012) http://www.stevendifranco.com/index.php?option=com_content&view=article&id=58&Itemid=42
  • Gascoigne, Bamber. "History of Clocks." History World. (March 15, 2012) http://www.historyworld.net/wrldhis/PlainTextHistories.asp?groupid=2322&HistoryID=ac08&gtrack=pthc
  • Lombardi, Michael. "The Accuracy and Stability of Quartz Watches." Horological Journal. February 2008. pp 57-59 (March 15, 2012).
  • Loftus, Jack. "This clock won't be late for another ten million years, give or take." Gizmodo." Aug. 28, 2011 (March 10, 2012) http://gizmodo.com/5835138/the-worlds-most-accurate-timepiece-resides-in-london
  • PrestigeTime.com. "Watches and Accuracy." 2012. (March 9, 2012) http://www.prestigetime.com/page.php?accuracy
  • Seiko. "Mechanism: The genius of Spring Drive." 2008. (March 9 2012) http://www.seikospringdrive.com/flash.html
How the Bulova Precisionist Works (2024)

FAQs

How the Bulova Precisionist Works? ›

How the Precisionist Mechanism Works. At its heart, the Precisionist mechanism uses tried-and-true quartz crystal technology: A carefully measured electrical current energizes a quartz crystal shaped like a tuning fork, which begins to oscillate at a particular frequency.

How does a Bulova Automatic watch work? ›

A mechanical watch, draws power from a coiled piece of metal called a mainspring. This mainspring is wound tight either via a rotor in automatic watches or through the crown in hand-wound watches (but more on these two things later). As the spring unwinds, it releases energy that drives the movement.

How to set a Bulova Precisionist watch? ›

Turn the crown clockwise to move the hands forward or counterclockwise to move them back. Try to get as close to the current time as you can so your watch is accurate. Only the hour and minute hands will change. The second hand will stay in the same place.

Do you have to wind a Bulova Automatic watch? ›

Mechanical watches are powered by the movement of your wrist as you wear it. It is recommended that you use a watch winder when you are not wearing your watch every day. If you use a watch winder for your Bulova Automatic, set your winder to 700 – 900 CW rotations per day.

How does Bulova Precisionist work? ›

How the Precisionist Mechanism Works. At its heart, the Precisionist mechanism uses tried-and-true quartz crystal technology: A carefully measured electrical current energizes a quartz crystal shaped like a tuning fork, which begins to oscillate at a particular frequency.

Is Bulova Precisionist automatic? ›

Watch manufacturer Seiko claims its Spring Drive -- an electrically adjusted automatic mechanism -- varies by no more than one second per day, for example.

What does the symbol on the Bulova watch mean? ›

A proud symbol of Bulova leadership in technology, the tuning fork initially signified the. revolutionary tuning fork movement of Accutron, the world's first fully electronic watch.

Why did my Bulova watch stopped working? ›

Battery Needs Replacement

The most common reason a watch will stop working or need service is due to the battery. A good rule of thumb when it comes to watch batteries is to replace them every two years. A quartz watch, however, can last three years or longer because they do not have second hands.

How many beats per second is the Bulova Precisionist? ›

This design increases the total vibrations to eight times that of a standard quartz movement, with the Precisionist running at 242.144 Khz. The result is the sweeping second hand that actually ticks 16 times per second, even higher than a mechanical movement's 8 to 10 times per second.

How long does a Precisionist battery last? ›

Pushing a seconds hand along all the time requires a lot of power, and quartz movements must slowly sip power from their batteries. This is the one element of the Bulova Precisionist I really don't understand – how Bulova was able to give the watch a sweeping seconds hands and retain a battery life of 2-3 years.

Is Bulova a high end brand? ›

Is Bulova a luxury watch brand? While not typically considered a luxury brand, some Bulova watches, especially the vintage and limited edition ones, are considered collectibles and are priced similarly to entry-level luxury watches.

How to wind bulova precisionist watch? ›

Turn the crown to the right (clockwise) in position 0. When the watch stops, turning the crown about 40 times will wind the mainspring fully.

Is Bulova Swiss or Japanese? ›

Bulova is an American timepiece manufacturing company that was founded in 1875 and has been owned by Japanese multinational conglomerate Citizen Watch Co. since 2008. The company makes watches, clocks and accessories, and it is based in New York City.

What happens if you don't wind an automatic watch? ›

When you leave it unwound, you just need to rewind the watch if you want to wear it. When your automatic watch stops, it means that the mainspring becomes fully unwound. Therefore, if you let it stop, you simply leave the watch unwound, and the mainspring cannot constantly power its movement.

Why does my automatic Bulova watch keep stopping? ›

It is likely because you're not wearing or winding the watch enough. Automatic watches gain power from manually winding it, or from the automatic winding that occurs from your motion while you are active while wearing it. So simply put, if you're not wearing it, your power reserve will run out.

How long do automatic watches last for? ›

In the realm of horology, the longevity of automatic watches is a testament to their enduring appeal. With proper care and maintenance, an automatic watch can last a lifetime, becoming a cherished heirloom passed down through generations.

How does an automatic watch mechanism work? ›

How do automatic watches work? An automatic watch movement features a freely rotating metal weight called the rotor, the movement from the wearer's wrist causes the rotor to spin, as the rotor spins it automatically coils the mainspring inside the movement which provide the power for the watch.

What kind of movement does Bulova use? ›

The Bulova automatic watch uses a self-winding movement, also known as a self-winding mechanical movement. This movement consists of a mainspring (mainspring), a rotating balance wheel and governor, and a series of gears and mechanisms.

Top Articles
Latest Posts
Article information

Author: Rev. Leonie Wyman

Last Updated:

Views: 6373

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Rev. Leonie Wyman

Birthday: 1993-07-01

Address: Suite 763 6272 Lang Bypass, New Xochitlport, VT 72704-3308

Phone: +22014484519944

Job: Banking Officer

Hobby: Sailing, Gaming, Basketball, Calligraphy, Mycology, Astronomy, Juggling

Introduction: My name is Rev. Leonie Wyman, I am a colorful, tasty, splendid, fair, witty, gorgeous, splendid person who loves writing and wants to share my knowledge and understanding with you.