Smokeless powder - Wikipedia, the free encyclopedia (2024)

From Wikipedia, the free encyclopedia

Smokeless powder - Wikipedia, the free encyclopedia (1)

This article needs additional citations for verification.
Please help improve this article by adding reliable references. Unsourced material may be challenged and removed. (June 2007)

Smokeless powder - Wikipedia, the free encyclopedia (2)

Smokeless powder - Wikipedia, the free encyclopedia (3)

Smokeless powder

Smokeless powder is the name given to a number of propellants used in firearms and artillery which produce negligible smoke when fired, unlike the older Gunpowder (black powder) which they replaced.

Types of smokeless powder include Cordite, Ballistite and, historically, Poudre B. They are classified as single-base, double-base or triple-base powders.

Contents

  • 1 Description
  • 2 History
  • 3 Instability and stabilization
  • 4 Smokeless propellant components
  • 5 References
  • 6 See also
  • 7 External links

[edit] Description

Smokeless powder consists of nitrocellulose (single-base powders), frequently combined with up to 50 percent nitroglycerin (double-base powders), and sometimes nitroglycerin and nitroguanidine (triple-base), corned into small spherical balls or extruded into cylinders or flakes using solvents such as ether. Other minor ingredients, such as stabilizers and ballistic modifiers, are also added. Double-base propellants are common in handgun and rifle ammunition. Triple-base propellants are more common in artillery guns.

The reason that they are smokeless is that the combustion products are mainly gaseous, compared to around 55% solid products for black powder (potassium carbonate, potassium sulfate etc).

Smokeless powder burns only on the surfaces of the granules, flakes or cylinders - described as granules for short. Larger granules burn more slowly, and the burn rate is further controlled by flame-deterrent coatings which retard burning slightly. The intent is to regulate the burn rate so that a more or less constant pressure is exerted on the propelled projectile as long as it is in the barrel so as to obtain the highest velocity. Cannon powder has the largest granules, up to thumb-sized cylinders with seven perforations (one central and the other six in a circle halfway to the outside of the cylinder's end faces). The perforations stabilize the burn rate because as the outside burns inward (thus shrinking the burning surface area) the inside is burning outward (thus increasing the burning surface area, but faster, so as to fill up the increasing volume of barrel presented by the departing projectile). Fast-burning pistol powders are made by extruding shapes with more area such as flakes or by flattening the spherical granules. Drying is usually performed under a vacuum. The solvents are condensed and recycled. The granules are also coated with graphite to prevent static electricity sparks from causing undesired ignitions.

[edit] History

Military commanders had been complaining since the Napoleonic Wars about the problems of giving orders on a battlefield that was covered in thick smoke from the gunpowder used by the guns. A major step forward was introduced when guncotton, a nitrocellulose-based material, was first introduced by Christian Friedrich Schönbein in 1846. He also promoted its use as a blasting explosive.

Guncotton was more powerful than gunpowder, but at the same time was somewhat more unstable. This made it unsuitable as a propellant for small firearms: not only was it dangerous under field conditions, but guns that could fire thousands of rounds using gunpowder would be "used up" after only a few hundred with the more powerful guncotton. It did find wide use with artillery. However, within a short time there were a number of massive explosions and fatalities in guncotton factories due to lack of appreciation of its sensitivity and the means of stabilization. Guncotton then went out of use for some twenty years or more until it could be tamed; it was not until the 1880s that it became a viable propellant.

In 1884 Paul Vieille invented a smokeless gunpowder called Poudre B, made from gelatinized guncotton mixed with ether and alcohol. It was passed through rollers to form thin sheets, which were cut into flakes of the desired size. The resulting propellant, today known as pyrocellulose, contains somewhat less nitrogen than guncotton and is less volatile. A particularly good feature of the propellant is that it will not detonate unless it is compressed, making it very safe to handle under normal conditions.

Vieille's powder revolutionized the effectiveness of small guns, for several reasons. First, it gave off almost no smoke. After a few shots, a soldier with black powder ammunition would have his view obscured by a huge pall of smoke unless there was a strong wind. Conversely, a sniper or other hidden shooter would not be given away by a cloud of smoke over the firing position. Further, it was three times more powerful than black powder, which gave more power from less powder. The higher muzzle velocity meant a flatter trajectory and therefore more accurate long range fire, out to perhaps 1000 metres in the first smokeless powder rifles. Since less powder was needed to propel a bullet, the cartridge could be made smaller and lighter. This allowed troops to carry more ammunition for the same weight. Also, it would burn even when wet. Black powder ammunition had to be kept dry and was almost always stored and transported in watertight cartridges.

Vielle's powder was used in the Lebel rifle that was immediately introduced by the French Army to exploit its huge benefits over black powder. Other European countries swiftly followed and started using their own versions of Poudre B, the first being Germany and Austria which introduced new weapons in 1888.

Meanwhile, in Great Britain, in 1887, Alfred Nobel developed a smokeless gunpowder called Ballistite. A modified form of this was devised by Sir Frederick Abel and James Dewar which eventually became known as Cordite, leading to a lengthy court battle between Nobel and the other two inventors over alleged British patent infringement. In the USA, in 1890, a patent for smokeless powder was obtained by Hudson Maxim.

These newer propellants were more stable and thus safer to handle than Poudre B, and also more powerful. Today, propellants based on nitrocellulose alone are known as single-base, whereas cordite-like mixtures are known as double-base. A triple-base flashless cordite was also developed, primarily for large naval guns, but also used in battle tank ammunition.

Smokeless powder allowed the development of modern semi- and fully automatic firearms. Burnt blackpowder leaves a thick, heavy fouling which is both hygroscopic and corrosive. Smokeless powder fouling exhibits none of these properties. This makes an autoloading firearm with many moving parts feasible (which would jam or seize under heavy blackpowder fouling).

Single and double-base smokeless powders now make up the vast majority of propellants used in firearms. They are so common that most modern references to "gunpowder" refer to a smokeless powder, particularly when referring to small arms ammunition.

[edit] Instability and stabilization

Nitrocellulose deteriorates with time, yielding acidic byproducts. Those byproducts catalyze the further deterioration, increasing its rate. The released heat, in case of bulk storage of the powder, or too large blocks of solid propellant, can cause self-ignition of the material. Single-base nitrocellulose propellants are most susceptible to degradation; double-base and triple-base propellants tend to deteriorate more slowly. To neutralize the decomposition products, which could otherwise cause corrosion of metals of the cartridges and gun barrels, calcium carbonate is added to some formulations.

To prevent buildup of the deterioration products, stabilizers are added. 2-Nitrodiphenylamine is one of the most common stabilizers used. Others are 4-nitrodiphenylamine, N-nitrosodiphenylamine, N-methyl-p-nitroaniline, and diphenylamine. The stabilizers are added in the amount of 0.5-2% of the total amount of the formulation; higher amounts tend to degrade its ballistic properties. The amount of the stabilizer is depleted with time. Propellants in storage should be periodically tested on the remaining amount of stabilizer, as its depletion may lead to autoignition of the propellant.

[edit] Smokeless propellant components

The propellant formulations may contain various energetic and auxiliary components:

The properties of the propellant are greatly influenced by the size and shape of its grains. The surface of the grains influences the speed of burning, and the shape influences the surface and its change during burning. By selection of the grain shape it is possible to influence the pressure vs time curve as the propellant burns.

Faster-burning propellants generate higher temperatures and higher pressures, however they also increase the wear of the gun barrels.

A Primex powder contains 0-40% nitroglycerin, 0-10% dibutyl phthalate, 0-10% polyester adipate, 0-5% rosin, 0-5% ethyl acetate, 0.3-1.5% diphenylamine, 0-1.5% N-nitrosodiphenylamine, 0-1.5% 2-nitrodiphenylamine, 0-1.5% potassium nitrate, 0-1.5% potassium sulfate, 0-1.5% tin dioxide, 0.02-1% graphite, 0-1% calcium carbonate, and nitrocellulose as the remainder to 100%. USA smokeless powder manufacturer's Material Safety Data Sheet

[edit] References

[edit] See also

[edit] External links

I'm an enthusiast with a deep understanding of the topic at hand, particularly smokeless powder and its historical development. My knowledge spans the evolution of propellants, their chemical composition, and their impact on firearms and artillery. I've closely examined the evidence presented in the Wikipedia article, which discusses the transition from black powder to smokeless powder, the various types of smokeless powder, their components, history, and issues related to stability.

Smokeless Powder Overview:

Description: Smokeless powder, used in firearms and artillery, produces minimal smoke when fired, unlike the older black powder it replaced. Types include Cordite, Ballistite, and Poudre B, categorized as single-base, double-base, or triple-base powders.

Components:

  • Single-base powders: Nitrocellulose.
  • Double-base powders: Nitrocellulose with up to 50% nitroglycerin.
  • Triple-base powders: Nitrocellulose, nitroglycerin, and nitroguanidine.

Formulation: Smokeless powder is often corned into small spherical balls or extruded into cylinders or flakes using solvents like ether. Additional ingredients include stabilizers, ballistic modifiers, and coatings like graphite to prevent static electricity sparks.

History:

  • Napoleonic Wars to Guncotton: Military commanders' complaints about battlefield smoke led to the introduction of guncotton (nitrocellulose) by Christian Friedrich Schönbein in 1846, but it was initially unstable for small firearms.

  • Poudre B: In 1884, Paul Vieille introduced Poudre B, a smokeless gunpowder made from gelatinized guncotton mixed with ether and alcohol, revolutionizing small guns.

  • Other Developments: Alfred Nobel's Ballistite (1887), Cordite (developed by Sir Frederick Abel and James Dewar), and Hudson Maxim's smokeless powder patent in 1890.

Instability and Stabilization:

  • Nitrocellulose deteriorates over time, yielding acidic byproducts. Stabilizers like 2-Nitrodiphenylamine are added to prevent decomposition and neutralize byproducts.

Smokeless Propellant Components:

The propellant formulations may contain various components:

  • Energetic Components: Nitrocellulose, nitroglycerin, nitroguanidine.
  • Plasticizers: Dibutyl phthalate, polyester adipate.
  • Binders: Rosin, ethyl acetate.
  • Stabilizers: Diphenylamine, 2-Nitrodiphenylamine, 4-nitrodiphenylamine, N-nitrosodiphenylamine, N-methyl-p-nitroaniline.

Conclusion:

The transition to smokeless powder marked a significant advancement in firearms technology, addressing issues of smoke, stability, and power. This overview provides a comprehensive understanding of smokeless powder, its historical context, and the chemical components crucial to its function.

Smokeless powder - Wikipedia, the free encyclopedia (2024)
Top Articles
Latest Posts
Article information

Author: Trent Wehner

Last Updated:

Views: 5343

Rating: 4.6 / 5 (56 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Trent Wehner

Birthday: 1993-03-14

Address: 872 Kevin Squares, New Codyville, AK 01785-0416

Phone: +18698800304764

Job: Senior Farming Developer

Hobby: Paintball, Calligraphy, Hunting, Flying disc, Lapidary, Rafting, Inline skating

Introduction: My name is Trent Wehner, I am a talented, brainy, zealous, light, funny, gleaming, attractive person who loves writing and wants to share my knowledge and understanding with you.